# MS3000 单相继电保护测试仪

| <b>-</b> , | 简介               | 2  |
|------------|------------------|----|
| 二、         | 硬件结构             | 2  |
| 三、         | 技术参数             | .4 |
| 四、         | 操作使用说明           | .7 |
| 五、         | 谐波说明             | 7  |
|            | 1、系统设置           | .8 |
|            | 2、任意测试           | .9 |
|            | 3、交流继电器测试        | 12 |
|            | <i>4、直流继电器测试</i> | 13 |
|            | 5、中间继电器测试        | 16 |
|            | 6、 <i>功率方向测试</i> | 18 |
|            | 7、反时限测试          | 19 |
|            | 8、距离定值校准         | 20 |
|            | 9、零序保护定检         | 22 |
|            | 10、整组测试          | 23 |
|            | 11、差动谐波制动        | 25 |
|            | 12、文件传输          | 26 |
| 陈          | 录 1. 常见问题处理      | 27 |
|            | 1 报警信息的判断        | 27 |

一、简介

单相继电保护测试仪是我公司于 2017 年针对铁路方面推出的另 一型号继电保护测试仪。该测试仪吸取和继承了本公司其他测试仪的 优点,在保持我公司产品优良的技术指标的同时,根据用户的要求简 化了一部分功能,适用于铁路方面的继电保护实验和调试。

# 二、硬件结构





# 三、技术参数

1、 无线联机

#### 蓝牙 BLE:

可靠距离: 2m

#### WIFI:

可靠距离: 7m

#### 显示

5.6" TFT-LCD 显示屏

#### 触控

四线电阻触摸屏

### 电流输出

## 输出范围

1-相交流: 1 × 0 ···· 30 A(或 1 × 0 ···· 40 A)

1-相直流: 1 × 0 ····±20 A

#### 输出功率

1-相交流: 1 × 300 VA (或1 × 450 VA)

1-相直流: 1 × 200W

精度: 读数 0.1%, 或范围 0.04%

失真度: < 0.5%

分辨率: 2.0 mA

### 电压输出

### 输出范围

1-相交流: 1× 0 ··· 125 V (或 1× 0 ··· 300 V)

1-相直流:  $1 \times 0 \cdots \pm 176 V$  (或  $1 \times 0 \cdots 424V$ )

### 输出功率

1-相交流: 1 × 100VA

1-相直流: 1 × 100 W

精度: 读数 0.1%, 或范围 0.04%

失真度: < 0.5%

分辨率: 4.0 mV

电流电压一般参数 频率范围

静态范围 DC ... 1000 Hz

暂态范围 DC ... 3000 Hz

频率精度: 0.01%

频率分辨率: 0.001Hz

相位范围: -360° ... +360°

相位精度: < 0.2°

相位分辨率: 0.05°

#### 开关量输入输出 开关量输入

数量:2

类型: 10-250 Vdc, 或空接点(自动识别)

分辨率: 50 µs

最大测量时间: 99999.999S

开关量输出

数量:2

类型: 空接点, 软件控制

交流断开能力: 0.5 A, 250 Vac

直流断开能力: 0.5 A, 60 Vdc

#### 其它参数

额定供电电压范围: 150 ··· 250 Vac / 220 Vdc

允许供电电压范围: 120 ··· 265 Vac / 220 Vdc ± 10%

额定频率: 50 … 60 Hz

允许频率: 45 … 65 Hz

使用温度: -5 … +50°C

重量: 6 kg

尺寸: 365X150X255mm

接口:

PC 控制接口(背面): 网口(用于联机测试)

数据接口(正面): 2 × USB(用于软件升级、报告传送及 USB 鼠标/键盘)

# 四、操作使用说明

打开测试仪,系统经过初始化后,屏幕上将显示主菜单,如下图:



各测试模块独立,触摸或者插入鼠标点击要使用的测试模块成所 有操作。(注:插入鼠标时显示鼠标光标,如果未插入光标则不显示)

# 五、谐波说明

在以上的测试模块当中,每个模块都包含谐波测试,任意模块都 能进行谐波的测试。设置谐波的次数、百分含量和相位,然后点击测 试就能输出谐波,次数默认为0(默认不输出谐波)。

#### 1、系统设置

第一步:打开测试仪,触摸或者使用鼠标点击"系统设置",单击进入"系 统设置"模块(以下各个模块相同,不再叙述),

**系统设置**界面如下:

| 系统设置(2.2.1)                                                                                                     |       | ┌报警设置 ─── | 「系统町 | 前——— |  |
|-----------------------------------------------------------------------------------------------------------------|-------|-----------|------|------|--|
| <br>  系统频率(Hz):                                                                                                 | 50    |           | 年    | 2017 |  |
| <i>又</i> 依由压(小),                                                                                                |       | ☑过载       | 月    | 11   |  |
|                                                                                                                 | 57.74 | 口腔        | 日    | 27   |  |
| │ 开关量分辨率(ms):                                                                                                   | 3     |           | 时    | 13   |  |
| 故障前时间(s):                                                                                                       | 3     | ☑ 闭锁      | 分    | 24   |  |
| 故障后时间(s):                                                                                                       | 3     |           | 秒    | 42   |  |
| Ip设置         装置名称:       未命名测试仪         IP地址:       192       168       3       121         IP的取值范围为192.168.3.2 |       |           |      |      |  |

第二步:设置"系统频率",这个频率除了手动测试外其他模块型号正常值均采用这个值;默认为中国系统频率50Hz。

第三步:设置系统电压,这个值采用默认的57.735V。

第四步:设置"**开关量分辨率**",常规继电器请设置大一点比如2ms以上, 微机保护设置为1ms及0.1ms都可以实现;软件默认为2ms。

第五步:设置"故障前时间",所有测试模块进入后自动读取设置的故障前时间。

第六步:设置"故障后时间",所有测试模块进入后自动读取设置的故障后时间。

第七步:设置"直流电源"的输出,共有三个选项:不输出、110V、220V; 一般默认为不输出,。

第八步:"报警信息",指在异常情况时的有声音提示信息,只有选择打钩 后,在异常时才会有声音提示信息。

第九步:设置"系统时间",设置后更新系统的系统时钟和硬件时钟。

第十步:设置ip地址,根据红色字体提示设置。(注:只能设置为3网段) 第十一步:设置完成后,点击"保存"退出。

说明:开关量分辨率指测试仪开关量用于分辨断开和闭合的时间(测试仪硬件支持的最小分辨率为50us)。

### 2、任意测试

功能:能对所有的保护、继电器进行测试,测试模式有手动、触发、自动3 中模式。

手动模式:根据步长设置中电流,电压,相位,频率步长用右侧的"增加"、"减少"按钮手动控制变化输出。

触发模式:根据设置的故障前、故障、故障后的时间参数输出设置的相应 的电压电流值。

自动模式:根据步长设置中电流,电压,相位,频率步长、步长时间及步数自动变化。若有开入信号,系统将保持故障量值一段时间输出,这个时间又 界面上的"保持时间"决定。

通道: V I 若选中,则在手动模式或者自动模式下按照步长值变化。 手动和自动模式调整量:包括所选变化项幅值、频率、相位。

#### 手动测试:

| 任意        | 测试(2.2.<br>津費学                         | 8)   |              |     | নাহ এ | とおお                                    |       |       |    |
|-----------|----------------------------------------|------|--------------|-----|-------|----------------------------------------|-------|-------|----|
| (W)<br>() | 叫笑式<br>手动                              | ○ 触发 | ○ 自动         |     |       | 化多数一<br>幅值                             | ○ 相位  | 0 #   | 须率 |
| _ 基       | 波 ———————————————————————————————————— | 相位   | 频率           | 变化量 | 「谐    | 皮 ———————————————————————————————————— | 含量(%) | 幅值    | 相位 |
| V.        | 57.74                                  | 0    | 50           |     |       | 0                                      | 20    | 11.55 | 0  |
| 1         | 3                                      | 0    | 50           |     |       | 0                                      | 20    | 0.6   | 0  |
|           |                                        |      |              |     |       |                                        |       |       |    |
|           | I(A):                                  | 0.5  | □ 开出         | 41  | 07    | 甲出2                                    |       |       |    |
|           | v(v): [                                | 1    | □ 故障时间       | 设置一 |       |                                        |       |       |    |
|           | P(°):                                  | 1    | 故障前(s)       | ):  | 3     |                                        |       |       |    |
| F         | =(Hz):                                 | 1    | <br>  故障(s): |     |       |                                        |       |       |    |
| 步步        | <时间(s):[                               | 0.5  |              |     |       |                                        |       |       |    |
|           | 步数: [                                  | 10   | 故障后(s)       | ):  | 3     | 3                                      | 增大    |       | 减小 |
| <br>运行    | 正常                                     |      |              | 1 2 | 测     | 试                                      | 帮助    | 保存    | 退出 |

电流和电压的幅值或频率或相位按照设定步长随着点击软件中的"增加"和"减少"增减, 输出的值即界面上显示的值。动作后会显示动作值,需要手动停止输出。

说明:需要直流量输出请将频率设置为"0"。 触发模式:

| 任意     | 测试(2.2.<br>建模式                         | 8)  |                  |            | _ হাঁচ/ | 化会粘工      |       |       |    |
|--------|----------------------------------------|-----|------------------|------------|---------|-----------|-------|-------|----|
| 0      | 手动                                     | ●触发 | ○ 自动             |            |         | 幅值        | ○ 相位  | Oţ    | 频率 |
| 基      | 波 ———————————————————————————————————— | 相位  | 频率               | 变化量        | _<br>「谐 | 波 <u></u> | 含量(%) | ) 幅值  | 相位 |
| V      | 57.74                                  | 0   | 50               |            | V       | 0         | 20    | 11.55 | 0  |
| 1      | 3                                      | 0   | 50               |            |         | 0         | 20    | 0.6   |    |
| 「步     | 长设置 ——<br>((A): [                      | 0.5 | ┌ 开出设置<br>│ □ 开出 | 41         |         | 开出2       | 一测试结  | ₹     |    |
|        | V(V): [<br>P(°): [                     | 1   | - 故障时间<br>故障前(s  | 设置 —<br>): |         | 3         |       |       |    |
|        | F(Hz):                                 | 1   | 故障(s):           |            |         | 5         |       |       |    |
| 步卡<br> | 长时间(s):[<br>歩数:                        | 0.5 | 故障后(s            | ):         |         | 3         | 増大    |       | 减小 |
| 运行     | ·<br>正常                                |     |                  | 1 2        | 测       | 试         | 帮助    | 保存    | 退出 |

故障前输出额定系统电压,时间为设置的"故障前时间",然后输出界面上显示的参数,输出时间为"故障时间",在此期间如果保护动作,反馈回开入量则进入故障后状态,输出系统电压,时间为"故障后时间",在测试结果处显示动作时间。如果保护未动作,则输出停止,测试结束。保护未动作有可能输出的值不在保护动作范围内,包括幅值、频率、相位及输出时间太短。

自动模式:

| 任意     | 测试(2.2.<br>试模式——                       | 8)   |             |           | 一本社 | 火轰粉                                    |       |       |    |
|--------|----------------------------------------|------|-------------|-----------|-----|----------------------------------------|-------|-------|----|
| 0      | 手动                                     | ○ 触发 | ●自动         |           | • t | □ <u>ਡਾ</u> ਡ⊼<br>幅值                   | ○ 相位  | 〇步    | 顷率 |
| _ 基:   | 波 ———————————————————————————————————— | 相位   | 频率          | 变化量       |     | 皮 //////////////////////////////////// | 含量(%) | 幅值    | 相位 |
|        | 57.74                                  | 0    | 50          |           |     | 0                                      | 20    | 11.55 | 0  |
| 1      | 3                                      | 0    | 50          |           |     | 0                                      | 20    | 0.6   | 0  |
| 一步     | 长设置 ——<br>((A):  「                     | 0.5  | ─ 开出设置 □ 开出 | <br>      |     | 干出2                                    | 一测试结验 | ₹     |    |
|        | v(v): [                                | 1    |             | ·<br>设置 — |     |                                        |       |       |    |
|        | Р(°):<br>=(Hz): [                      | 1    | 政障的(s);     | ) •       |     | >                                      |       |       |    |
| 步长     | <时间(s):<br>步数:                         | 0.5  | 故障后(s)      | ):        |     |                                        | 增大    |       | 减小 |
| <br>运行 | 正常                                     |      |             | 1 2       | 测   | 武                                      | 帮助    | 保存    | 退出 |

界面参数作为初始值,按照设置变化量、变化步长、步数、时间变化。变化到保护动作 反馈开入信号,测试停止,在结果处显示显示动作值,如果没有动作则一直变化到截止步数。

# 3、交流继电器测试

**功能**:用来自动检测单个电流继电器的动作电流、返回电流、返回系数或动作时间。



测试开始后电流按照设置的初始值、步长、步长时间输出。保护动作后如果没有测试返 回值则输出"保持时间"的动作值后停止测试;如果需要测试返回值则输出"保持时间"的 动作值后按动作值返回,测试得到返回值后输出返回值"保持时间"后停止测试,报告中显 示动作值,返回值和返回系数。

动作时间测试:



输出测试电流,时间为"最大输出时间",如果保护未动作,则自动停止,保护动作后 立刻停止输出并显示动作时间。

# 4、直流继电器测试

功能:用来自动检测单个时间继电器的动作值、返回值、返回系数 及动作时间。分为电压直流继电器、电流直流继电器。

### 动作值和返回值测试:



首先选择继电器类型、输出相,点击面板的开始键后输出相按照设置的初始值、终值、步长、步长时间输出。保护动作后如果没有测试返回值则输出"保持时间"后停止测试;如 果需要测试返回值则输出"保持时间"动作值后测试返回值,测试得到返回值后输出"保持时间"的返回值后停止测试,报告中显示动作值、返回值和返回系数。]

动作时间测试:



输出"最大输出时间"的"测试电压"或"测试电流",如果保护未动作,则自动停止, 保护动作后立刻停止输出并且显示动作时间。

### 5、中间继电器测试

**功能**:用于测试中间继电器的动作值、返回值、返回系数及动作时间。

说明:

电压启动电压返回接线电压输出为V,接点为1号接点。 电流启动电流返回接线电流输出为I,接点为1号接点。 电流启动电压保持启动电流输出为I、保持电压为V,接点为1号接点。 电压启动电流保持接线启动电压输出为V,保持电流为I,接点为1号接点。 动作值返回值测试:



#### 操作方法

第一步: 根据继电器型号接好测试线

第二步:根据继电器的型号选择"继电器型号"

第三步:填入继电器的各项参数;

第四步:**开始测试**,按面板上的"测试"键即可进行测试。 测试原理:

a、继电器类型为电压启动电压返回,V12从初始电压按步长和步长时间上升,到保护动作(如果没有动作测试结束),然后V12直接到1.2倍动作电压后按步长和步长时间下降,到保护返回(如果没有返回,则一直下降到0)。

b、继电器类型为电流启动电流返回, I 从初始电流按步长和步长时间上升, 到保护动作(如果没有动作测试结束), 然后 I 直接到 1.2 倍动作电流后按步长和 步长时间下降, 到保护返回(如果没有返回, 则一直下降到 0)。 c、继电器类型为电流启动电流保持,I从初始电流按步长和步长时间上升, 到保护动作(如果没有动作测试结束),I保持动作电流,一段时间后关闭I;到 保护返回(如果没有返回,则一直下降到0)。

d、继电器类型为电压启动电流保持,V12 从初始电压按步长和步长时间上升,到保护动作(如果没有动作测试结束),然后 I1 输出保持电流,V12 保持动作电压,一段时间后关闭 V12;然后 I 按步长和步长时间下降,到保护返回(如果没有返回,则一直下降到 0)。

e、继电器类型为电流启动电压保持,I从初始电流按步长和步长时间上升, 到保护动作(如果没有动作测试结束),然后 V12 输出保持电压,I保持动作电流, 一段时间后关闭 I;然后 V12 按步长和步长时间下降,到保护返回(如果没有返 回,则一直下降到 0)。

动作时间测试:



#### 操作方法

第一步:根据继电器型号接好测试线(具体见说明),

第二步: 根据继电器的型号选择"继电器型号"

第三步:填入继电器的"测试电压值"和"最大的输出时间"。

第四步:开始测试,按面板上的"测试"键即可进行测试,动作测试结果区 域输出动作时间。

# 6、功率方向测试

功能:用于功率方向继电器及其它方向元件的边界角搜索,并自 动计算出灵敏角。

| 功率方向(2.2.2) |        |           |        |
|-------------|--------|-----------|--------|
| 电流(A):      | 5      | ┌ 谐波 ──── |        |
| 起始角度(Deg):  | 30     | 次数        | 0      |
| 步长时间(s):    | 2      | 含量(%)     | 20     |
| 电压(∨):      | 40     | 相位        | 0      |
| 步长(Deq):    | 5      |           |        |
| 故障前时间(s):   | 8      |           |        |
|             |        | - 测试结果 —— |        |
| 运行正常        | 1 2 测试 | 帮助        | 保存  退出 |

测试方法:

第一步:选择故障类型,打开测试仪。

第二步:填入继电器的故障电流、故障电压;

第三步:填入搜索的起始角度,搜索的步长及步长时间、故障前时间。

第四步:**开始测试**,按面板上的"测试"键即可进行测试;测试方式为线性 搜索法。故障前三相输出系统电压相位正序,电流无输出,故障时故障相输出故 障电压、故障电流。测试结果显示边界角1、边界角2、灵敏角。

•

()

退出

### 7、反时限测试



功能:用于测试反时限继电器测试的动作时间及反时限曲线。

运行正常

测试方法:

- 第一步: 根据保护接好线
- 第二步:选择测试对象及输出相。
- 第三步: 输入初值、终值、步长、等待时间、最长故障时间;

1 2

- 第四步:开始测试,按面板上的"测试"键即可进行测试;
- 第五步:测试完后界面上将显示动作结果,点击界面上的"**保存**"键,便可 以将测试结果保存;

测试

Ŧ

帮助

保存

**说明**: I-T测试是测试电流反时限,电流输出相可以选择,从初值到终值按 照步长增加分别输出每一步电流并且记录下每一个点的动作时间。V-T测试是 测试电压时限曲线,电压输出相可以选择。F-T测试是测试频率反时限曲线, 电压输出为三相正序电压。

# 8、距离定值校准

功能:用于距离保护的定值校验;



测试方法

第一步:连接测试线,三相电流电压接入保护的对应电流电压的端子;

第二步:设置"定值",选择测试段并将保护的整定阻抗、灵敏角、固定电流及整定时间,输入相应的定值筐,输入零序补偿系数,和各段的测试 点选择,选择故障类型参数及设置故障前后时间

第三步:进入"计算结果"界面,计算并显示出每个测试段每个测试点故障 前、故障时的电压电流幅值及其相位。如下图

|--|

| 设置                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 计算结果                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 测试结果                                                                                                              |   |    |    |    |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---|----|----|----|----|
| 1段<br>段<br>障<br>障<br>に<br>( ) )<br>( ) ) ) )<br>( ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) | <br>ば点 1: 0<br>電車の相位(De<br>:30相位(De<br>:30相位(Deg)<br>0相相: 74525相<br>:30相<br>:4.74525相<br>:30相<br>:30相<br>:4.74525相<br>:30<br>0相位(Deg)<br>0相位(Deg)<br>0相位(Deg)<br>0<br>0<br>0<br>0<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>0<br>0<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | .95<br>g):0<br>g):-120<br>g):120<br>:-75<br>:165<br>:45<br>位(Deg):(<br>g):-120<br>g):120<br>):-75<br>:165<br>):45 | ) |    |    |    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                   | 2 | 测试 | 帮助 | 保存 | 退出 |

第四步:开始测试,按面板上的"测试"键即可进行测试;

第五步:进入测试结果显示界面查看测试结果。

说明:接线方式,三相电流电压接入保护的对应电流电压的端子;故障类型 和测试点选择不分段,选中表示测试各段均做;反向故障只作一段。

退出

保存

9、零序保护定检

功能:用于零序保护的定值校验;

零序定值检验(2.2.2)

| 参数  测试结果                         |               |      |                     |       |
|----------------------------------|---------------|------|---------------------|-------|
|                                  | ☑ 1段          | ☑ 2段 | 🕑 3段                | ❷ 4段  |
| 电流定值(A):                         | 10            | 8    | 5                   | 2     |
| 故障时间(s):                         | 0.5           | 1    | 3                   | 4     |
| 灵敏角(度):<br>故障电压(∀):<br>故障前时间(s): | 75<br>0<br>15 |      | 谐波<br>次数:<br>含量(%): | 0     |
| 故障后时间(s):                        | 1             |      | 相位:                 | 0     |
|                                  |               |      |                     |       |
| 运行正常                             | 1 2           | 测试   | 帮助                  | 保存 退出 |

测试方法

第一步:连接测试线,三相电流电压接入保护的对应电流电压的端子:

测试

第二步:设置"定值",选择测试段并将保护的整定电流及整定时间,输入 相应的定值框。

帮助

第三步:选择故障类型参数和设置故障前后时间。

第四步:**开始测试**,按面板上的"测试"键即可进行测试;

第五步:进入"测试结果"界面查看测试结果。

说明:接线方式,三相电流电压接入保护的对应电流电压的端子,故障 类型选择不分段,选中表示测试各段均做。各段均做0.95、1.05和1.25三个点; 反向故障只作一段

# 10、整组测试

功能:用于保护的整组传动试验,三相电流电压接入保护的对应 电流电压的端子;

选择主界面的"整组测试",界面如下:

整组试验(2.2.2)

| 设置 计算结果 测试结果                  |                                      |                             |  |  |  |
|-------------------------------|--------------------------------------|-----------------------------|--|--|--|
| 故障模式<br>● 临时性故障<br>○ 永久性故障    | 重合闸参数<br>等待时间(s): 25<br>开关重合延时(s): 0 | 动作开入:开关量输入1<br>重合闸开入:开关量输入2 |  |  |  |
|                               |                                      | ]                           |  |  |  |
| び致 含重(%)<br>0 20              |                                      | 5                           |  |  |  |
| 故障前时间(s)<br>时间(s): 25         | 故障时间(s):                             | 2                           |  |  |  |
| ┌零序补偿系数                       | 短路阻抗(Ω):                             | 1                           |  |  |  |
| KL :     0       相位(度):     0 |                                      | 75                          |  |  |  |
|                               | 1 2 测试                               | 帮助保存退出                      |  |  |  |

### 测试方法

第一步:连接测试线;

第二步:设置"故障",选择故障形式和故障类型;设置故障前、故障、重 合态参数;零序补偿系数。

第三步:进入"计算结果"界面,计算并显示出故障前、故障时的电压电流 幅值及其相位。如下图

#### 整组试验(2.2.2)

| 设置 计算结果 测试结果                                                                                                                                                                                                                                                                                                                             |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 故障类型:A-E<br>故障前电压:<br>VA(V):30 相位(Deg):0<br>VB(V):30 相位(Deg):-120<br>VC(V):30 相位(Deg):-120<br>故障前电流:<br>IA(A):0 相位(Deg):-75<br>IB(A):0 相位(Deg):165<br>IC(A):0 相位(Deg):45<br>故障电压:<br>VA(V):4.995 相位(Deg):0<br>VB(V):30 相位(Deg):-120<br>VC(V):30 相位(Deg):120<br>故障电流:<br>IA(A):5 相位(Deg):-75<br>IB(A):0 相位(Deg):165<br>IC(A):0 相位(Deg):45 |                 |
|                                                                                                                                                                                                                                                                                                                                          | 1 2 测试 帮助 保存 退出 |

第四步:开始测试,按面板上的"测试"键即可进行测试;

第五步:进入"测试结果"界面查看动作结果,点击界面上的"保存"键, 便可以将测试结果保存;

说明:接线方式,三相电流电压接入保护的对应电流电压的端子,永久性故障表示启动重合闸后故障加速跳闸,瞬时性故障表示重合后无故障。故障前输出电压为线电压100V,及负荷电流0A。故障状态输出故障量,重合态输出为100V正常电压无电流,二次故障与一次故障相同。

# 11、谐波制动

# 功能:用于差动保护的谐波制动系数验证。

| 差动谐波制动(2.2.2) |                        |
|---------------|------------------------|
| ┌参数─────      |                        |
| 谐波次数:         | 2 谐波含量起始值(%): 15       |
| 谐波含量终止值(%):   | 5 谐波含量步长(%): 0.5       |
| 步长时间(s):      | 0.1                    |
| 基波相位(°):      | 0                      |
| 基波电流(A):      | 5                      |
|               |                        |
|               | 1 2<br>● ● 测试 帮助 保存 退出 |

#### 测试方法

第一步:选择基波类型,连接测试线,将基波相电流接入差动保护的任意一个电流(有些必须是高压侧,请看保护装置的技术说明;

第二步:在"参数"区填入谐波次数、谐波含量的起始值、终值、步长、步 长时间、基波电流值、基波相位及动作后保持动作值的时间,基波电流一定要大 于保护的门槛电流。

第三步:开始测试,按面板上的"测试"键即可进行测试;

第四步:测试完成后点击"保存"保存测试结果。

说明:接线方式是将基波相电流接于保护装置的任意一相上。谐波电流从基 波电流的"谐波含量起始值"按照下降步长、步长时间开始下降,保护未动作则 下降至"谐波含量终止值"。

# 12、文件传输



双击主界面的文件传输,弹出文件传输的对话框,可选择导出报告、删除报告或者升级 程序。将 U 盘插入面板的 USB 接口,点击"执行"按钮即可完成操作。

导出报告:导出的报告文件名为 report.txt 的副本,包含各个测试模块的测试结果。

删除报告:永久性删除文件名为 report.txt 的报告,请谨慎操作。

升级程序:在U盘里建立 APPDIR 目录,将需要升级的程序放入此目录下。

注意: U 盘的文件系统格式必须为 FAT32 文件系统, NTFS 文件系统无法识别。

# 附录 1 常见问题处理

### 1 报警信息的判断

MS3000 单相继电保护测试仪有报警信息分为以下三种:

过载: 表示仪器电流或者电压是负载超过测试仪标称的负载能力,终止该相输出。 闭锁: 表示测试功率放大部分的某一级放大部分不能输出,需要对这一级放大部 分进行更换。

温度保护:表示长时间大功率输出仪器功率器件温度过高。

出现"**过载**"信息请检查测试仪外部回路的负载阻抗(交流要看点看只能用伏安法看), 超过仪器负载能力请减小负载测试(对于保护装置应该不会出现这类问题,只是不能在 电压回路叠加其他负载如测量回路,电流不能串接外部电缆)

出现"温度保护"停止测试仪输出,等待温度下降到正常工作温度在进行测试(出现温度保护,测试仪会自动停止输出,待温度降到正常工作温度后会自行恢复工作。)。 出现"闭锁"时请与我公式技术人员联系:联系电话:028-86080225